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Abstract-Free edge delamination of uniaxially stressed layered specimens is simulated using non­
linear finite element analysis. Generalized plane strain elements and interface elements have been
developed for this purpose. Thermal and hygroscopic effects have been taken into account for the
modelling of the plys, and a mode-I fracture model which incorporates strain softening has been
used for the interface behaviour. The out-of-plane loading is controlled via an indirect displacement
control technique, which permits tracing the entire loading history. Using non-linear finite element
analysis free edge delamination in different graphite/epoxy laminates is examined. The numerical
results are in good agreement with experimental evidence and do not suffer from spurious mesh
dependence. Also the effects of laminate thickness (size effect) can be described properly.

I. INTRODUCTION

In recent years the application ofcomposite materials in structural components has become
increasingly popular. Especially in aircraft structures, composites are preferred to con­
ventional materials because of their high strength/stiffness versus weight ratios. However,
the relatively limited existing predictive capabilities for the growth of delamination in
laminated composites have delimited using the full potential of these materials.

Due to the varying fibre orientations and the anisotropy of the material, each ply of a
laminated composite behaves independently of the other plys. Large edge stresses are then
necessary to preserve compatibility ofdeformations. Together with matrix cracks transverse
stresses near the free edge are primarily responsible for the initiation of delamination. To
gain more insight in the complex phenomenon of delamination, we need procedures that
give us accurate predictions ofdelamination onset and growth. In this contribution we shall
focus on free edge delamination in uniaxially loaded laminates, which has been the subject
of much research since the early 1970s (Crossman and Wang, 1982; Kim and Soni, 1984;
O'Brien, 1982, 1985; Pagano, 1974; Pagano and Soni, 1989; Pipes and Pagano, 1970;
Wang et al., 1985; Wang, 1989).

Although finite element analysis combined with stress-based fracture criteria like the
one proposed by Tsai and Wu (1971) are often used to predict the failure of a composite
structure, it is widely recognized that the results of such a procedure should be regarded
with caution because they strongly depend upon the finite element discretization. To avoid
this problem ofmesh dependence Kim and Soni (1984) have used an average stress criterion.
The introduction of the ply thickness as a length scale, which results in a so-called non­
local model, is essential in their approach. However, delamination does not necessarily
progress at the location where the stresses have the maximum values, but grows at the
interface where the energy release rate exceeds the fracture toughness of the material. This
casts doubts on failure predictions that are purely based on stress criteria.

In view of the above arguments a crack-extension or crack-closure method seems more
appropriate in delamination analysis (O'Brien, 1982, 1985; Schellekens and de Borst,
1991a; Wang et al., 1985; Wang, 1989). Since these procedures calculate the energy release
rate from nodal forces and displacements rather than from stresses and strains, the results
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Fig. l. Cubic line interface element with nodal degrees-of-freedom.

are mesh independent, although a certain level of mesh refinement is necessary. A dis­
advantage of these linear fracture mechanics options is that, before we can determine the
interface that is the most critical, the energy release rate has to be calculated at each location
where delamination may initiate. This can become an expensive exercise, especially for large
structures.

In the proposed procedure generalized plane-strain elements with cubic interpolations
are used to model the plys of the laminate. A geometrically non-linear formulation is
developed for these elements, which have three translational degrees-of-freedom per node,
so that the warping of the cross-section can be described. To properly account for the
stresses that are induced during the manufacturing process thermal and hygroscopic effects
are included in the constitutive formulation for the plys. The plys are connected by eight­
noded line interface elements which have the ability to model the geometric discontinuity
that arises during the delamination process. Initially, these interface elements have a zero
thickness with four pairs of overlapping nodes (Fig. I). After initiation of delamination the
nodes of a pair are released.

Initiation of delamination in the ply interface occurs when the stress normal to the
plys exceeds the strength it of the ply interface. For this reason, initiation of delamination
suffers to a certain extent from mesh sensitivity. That is, for smaller elements the high stress
gradients are captured more accurately and higher peak stresses are computed, which cause
violation of the stress-based delamination initiation criterion.

The situation is different with respect to delamination propagation. The stress-strain
behaviour after the onset of delamination is governed by a softening type of response as
shown in Fig. 2. The quintessence of the approach is that the surface under the softening
curve is equal to the critical energy release rate Gc in the ply interface of the laminate. This
ensures on one hand a correct energy release during delamination propagation, so that
propagation is independent of the mesh refinement, and on the other hand it results in a
proper description of the size effect, Le. a thicker laminate fails at a lower ultimate strain
(more brittle).

Vn

Fig. 2. Traction-relative displacement relations for interface elements.
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Fig. 3. Geometry and loading conditions of uniaxially stressed specimen.
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The performance of the method is demonstrated by means of analyses of free edge
delamination in different graphite/epoxy specimens under uniaxial tension and compression.
Emphasis is put on the effects of laminate thickness (size effect), mesh refinement, the
influence of the transverse strength, of the initial thermal stresses and of imperfections on
the ultimate load capacity. The non-linear analyses have been carried out under indirect
displacement control. Using this numerical technique the increment of the applied out-of­
plane axial strain GII (Fig. 3) within a loading step is determined by the requirement that
the increment of the Crack Opening Displacement of the ply interface where delamination
occurs (COD, see Fig. 4) has the same value for each step of the loading process.

2. GENERALIZED PLANE-STRAIN ELEMENTS

In free edge delamination testing specimens are subjected to a uniaxial tensile or
compressive load. If the length of the laminate is large when compared to the width and
the thickness we may assume that, at a certain distance from the ends of the specimen, the
in-plane displacements in the r2rrplane are independent of the rl-coordinate (Fig. 3). This
results in the following set ofequations for the displacement field ofa cross-section (O'Brien,
1982; Pagano, 1974; Pagano and Soni, 1989; Pipes and Pagano, 1970) :

Ul(rbr2,r3) = AGllrl +uI(r2,r3),

u2(rb r2, r3) = u2(r2, r3),

u3(rb r2, r3) = u3(r2, r3),

(la)

(lb)

(Ie)

interface

elements

/nOden

ICDC

'" node m

$AS 30:9-6

Fig. 4. Crack Opening Displacement control for axial strain loading.
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with BI I a normalized strain that is prescribed in the 'I-direction of the specimen and A. a
load parameter. We now define the vectors r = ('1> '2, '3) and x = (XI> X2, X3) which
contain the material coordinates of a point in the reference configuration and the spatial
coordinates ofa point in the deformed configuration respectively. In a Lagrange description
we conveniently use the Green-Lagrange strain tensor Yij as a deformation measure. With
the aid of the deformation gradient

(2)

the strain tensor can be expressed as

with bij the Kronecker symbol. If the displacement components

Ui = Xi-'i

grow by !i.Ui, the strain increment !i.Yij reads:

(3)

(4)

(5)

where the subscript ,'i implies differentiation with respect to 'i' Noting that, for generalized
plane-strain conditions, !i.Ut", = !i.A.BII> !i.U2", = 0 and !i.U3." = 0 we obtain

(6)

where !i.g is of the order zero in the displacement increments,

(FII - 1)!i.A.B II + 1/2!i.A. 2Bi I
o
o

!i.g =

and !i.e and !i." are linear and quadratic in the displacement increments, respectively:

o

(7)

!i.e =

F 12!i.UI"2 +F22 !i.U2"2 +F32!i.U3"2

F I3 !i.U I." +F23!i.U2", +F33!i.U3",

(FII +!i.A.BII)!i.UI"2

F I2 !i.U I", + F I3 !i.UI"2 + F22!i.U2", + F23!i.U2"2 + F32!i.U3", + F33!i.U3"2

(FII +!i.A.BII)!i.UI",

(8)
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and

o
1/2((AUI.r)2+ (AU2.r)2+ (AU3.r) 2)

1/2((AuI.r;)2+ (AU2.rY+ (AU3.r) 2)

o

o

The contribution AA.81 is due to the applied strain loading:
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(9)

811

0

0
81 =

0
(10)

0

0

Extension of eqn (6) to include hygrothermal effects yields:

(11)

where AT; and ACj are the incremental changes in temperature and moisture content in the
current loading step, say i, and <X = (IX 11> lXu, 1X33, 1X12, 1X23, 1X31) and fl = (P 11> Pu, P33' P12,

P23, P31) contain the thermal and hygroscopic expansion coefficients, respectively. Assuming
that there are no other non-linear effects in the plys the stress increment at iteration j is
then given by

(12)

with Dp the elastic stress-strain matrix for the plys and A..1.j the value of the incremental
load parameter at iteration j. Subtracting the relation for the stresses at the end of iteration
j-l from eqn (12) results in

(13)

where the d-symbol denotes the iterative change of a quantity from iteration j-l to
iteration j.

For the derivation of the element stiffness matrix and the element load vector, the
principle of virtual work is utilized. Because ofthe absence of external loadings in the '2'r
plane the equilibrium equation that refers to the undeformed reference configuration reads:

(14)

where Vo denotes the volume of the body in the undeformed state. The variation of the
Green-Lagrange strain ()"Ij = 1J"Ij_1 +1J(d"lJ is given by

(15)

since the variation of the strain at the end of the previous iteration vanishes, (jy j _ I = 0, and
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since AT; and AC; are constant during the loading/time step. We now substitute eqns (13)
and (15) in the virtual work expression and linearize in order to apply Newton's method
for the solution of the set of non-linear equations. Transferring the terms that are of the
order zero in the displacement increments to the right-hand side gives:

In the following we shall describe the discretization of the virtual work equation. The
linear part dej of the incremental strain vector is related to the incremental nodal displace­
ment vector da = (dal,daf, ... ,dai, daL ... , ddi, daL ... , da'» through

(17)

BL denotes the linear strain displacement matrix, which is equal to [cf. eqn (8)]

0 0 0

F 12 O"2 F 22o"2 F 32o"2

F 13 0." F 23o." F 330",
BL = (F11 +dAjB11 )0"2 0 0

F 13o"2 +F\2o", F 230"2 +F 22o" , F 33o"2 +F 32o",

(F11 +dAjBII)O", 0 0

(18)

In eqn (18) we have used the notation

(19)

with n being the number of element nodes and N I , .•. , Nn the interpolation polynomials.
With the aid of eqn (17) the first term of eqn (16) can be written as

(20)

We next introduce the non-linear strain displacement matrix BNL :

0 0 0

0 0 0

0 0 0

a"2 0 0

0 a"2 0
BNL =

0 0 a"2
(21)

a", 0 0

0 a", 0

0 0 a",
with a", = alar;. Then, the second term in the left-hand side of the virtual work expression



Free edge delamination

becomes
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The 9 x 9 matrices 1: and E are equal to :

[

0"11 1 3 0"1213

1:= 0"(21 3 0"2213

0"31 1 3 0"231 3

and

0"31
1

3]

0"231 3

0"331 3

(23a)

with O"ij the Second Piola-Kirchhoff stress tensor and O"g.ij given by

(23b)

(24)

Substitution of eqns (17) and (22) into eqn (16), and requiring that the virtual work
principle holds for any virtual displacement increment yields

where

(26)

3. INDIRECT DISPLACEMENT CONTROL FOR STRAIN LOADING

A major drawback of load-controlled calculations is the fact that no limit points can
be passed. Riks (1979) has developed an arc-length method to overcome this limitation. In
this method the incremental load factor is constrained by the norm of the incremental
displacement vector. Although the arc-length control method has proven to be fairly
successful, it has been reported to fail in the case of highly localized failure modes. It was
suggested by de Borst (1987) that the displacement norm should in these cases be calculated
by considering a displacement vector that contains only the dominant degrees-of-freedom.

In conventional strain loading the incremental nodal displacement vector daj for
iteration j in a loading step is determined from eqn (25). If we define q as a normalized
external load vector:

(27)

and the internal force vector p as :

Pj_1 = - r BIO'j_1 dVo+~A.j_1 r BIDpll/dVo- r BIDpdgjdVo, (28)
J~ J~ J~
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then eqn (25) can be rephrased as:

(29)

since the iterative change dA.j of the load parameter equals dA.j = .1A.j-.1A.j_l' In an arc­
length modification of strain loading this process can be represented by the following set
of equations [e.g. de Borst (1987)] :

(30)

(31)

(32)

The incremental displacement vector dSj is determined on the basis of the requirement that
the Crack Opening Displacement (COD) of the interface between the two plys where
determination occurs should have the same value for each iteration (Fig. 4) :

d(COD) = 0~ ddj - ddj = O. (33)

In this relation ddj is the change in displacement in the thickness direction of the laminate
of node n from iteration j-I to j.

Substituting eqn (32) in eqn (33) yields the value for the incremental load parameter:

daI,n-dd..m
dk=- ) )) daII,n _ dd·I,m .

) )

(34)

The total incremental displacement vector from which the strains and stresses are calculated
is then obtained from

(35)

4. FORMULATION OF INTERFACE ELEMENTS AND DISCRETE CRACKING

The individual plys in the laminate are connected by interface elements (Schellekens
and de Borst, 1991a, b, 1992, Fig. I). In the elastic stage of the calculation no additional
deformations are allowed in the finite element model because of the introduction of the
interface elements in the finite element model. Therefore a sufficiently high dummy stiffness
has to be supplied. With the differential operator matrix L and the interpolation matrix H
defined as [e.g. Rots (1988) and Schellekens and de Borst (1993)] :

rl +1 0 0 0

JL= ~ 0 -1 +1 0 (36)

0 0 0 -1

and

n 0 0 0 0 0

0 n 0 0 0 0

0 0 n 0 0 0
H=

0 0 0 n 0 0
(37)

0 0 0 0 n 0

0 0 0 0 o n



Free edge delamination

with n the interpolation polynomial vector and the nodal displacement vector

a = (aLaL ... ,~, aL a~, ... ,ai,a:' aT, ... ,aD,

the relative displacement vector v is related to the nodal displacements through

v =LHa.
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(38)

(39)

If we denote the tangential stiffness matrix by Dh the tractions t = (tn, tso tt) are obtained
from

(40)

For a line interface element in a generalized plane-strain situation the tangential element
stiffness matrix then reads

(41)

in which , is the iso-parametric coordinate and detJ is the determinant of the Jacobian
matrix:

Once the elastic limit in an integration point of the interface element is exceeded the
traction-relative displacement relation D, becomes non-linear and is determined by a discrete
fracture model. In the present model delamination is initiated purely in mode-I, that is
when the traction tn normal to the plys exceeds the transverse tensile strength It of the ply
interface in the composite laminate. The traction and stiffness in mode-I delamination are
then gradually reduced to zero (cf Fig. 2 for a linear softening type of post-cracking
response). As stated in the Introduction the surface under the softening curve is equal to
the critical energy release rate Gc in the ply interface of the composite material. When the
fracture energy has been released completely, there is an internal stress-free geometrical
discontinuity.

For the derivation of the non-linear stiffness relation we shall use a decomposed
approach (Rots, 1988) in which the total incremental relative displacement vector in iter­
ation j consists of an elastic part !i.vjl and an inelastic part which is equal to the crack
relative displacement !i.vj. In the crack model the incremental tractions !i.tj for the intact
material are given by

(42)

with !i.vj' being the incremental elastic relative displacement vector. The incremental crack­
relative displacements !i.vjr are related to the incremental tractions according to

(43)

where Dfr is the crack stiffness matrix which is dependent on the mode-I post crack relation.
The total incremental relative displacement is written as

(44)

Substituting eqns (42) and (43) in eqn (44) results in

(45)
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or using the Sherman-Morrison-Woodbury formula

(46)

With interface elements the tractions and relative displacements have to be evaluated
in the local coordinate system of the integration points. In a geometrically non-linear
analysis the relative displacement nodal displacement matrix Bg that refers to the global
coordinate system has to be transformed to the local nst-coordinate system in the integration
points. With the updated coordinates the local axes in an integration point are determined
by

tT = (1,0,0),

(47)

(48)

(49)

with I = [(aX2/a~)2+ (aX3/a~)2] 1/2. The introduction ofa rotation matrix R = [0, s, t] allows
expression of the local relative displacement-nodal displacement matrix B/ as

(50)

For the interface elements the true tractions tu are related to the nominal tractions t through

Ao
tu = At,

u
(51)

with Ao the element surface in the reference configuration and Au the surface of the element
in the actual configuration.

5. FREE EDGE DELAMINATION IN GRAPHITE-EPOXY LAMINATES

To demonstrate the capabilities of the present approach free edge delamination was
simulated in various symmetric graphite/epoxy laminates. The specimens were subjected
either to tensile or to compressive strain loading. The mechanical and thermal properties
of the graphite/epoxy prepreg AS-3501-06 are collected in Table 1 (Wang, 1989). The values
for G23 and V23 are estimates. In the non-linear analysis the laminates are exposed to a
temperature drop equal to liT = -125°C to account for the residual thermal stresses that
are present in the laminate due to the forming process. Hygroscopic effects were not included
in the analyses (liC = 0). The total width of the laminates and the thickness of the
plys were equal to 25.0 mm and 0.132 mm, respectively (Fig. 5). Because of symmetry
considerations only a quarter of the cross-section of the specimen was modelled. Cubic
twelve-noded generalized plane-strain elements were used to model the individual plys and
cubic line interface elements were supplied to connect the plys. Calculations have shown

Table 1. Material properties for AS-3501-06 graphite/epoxy

Young's moduli [MPa) Shear moduli [MPa) Poissons ratio's Thermal expo coeff.

E" 140'10+ 3 G12 5.5' 10+3
V12 0.29 0(" 0.36' 10-6 °c- I

E22 11'10+ 3 G13 5.5' 10+ 3
V I 3 0.29 0(22 28.8' 10-6 °C- 1

E33 11'10+ 3 G23 5.5 '10+ 3
V23 0.3 0(33 28.8·1O- 6OC- '
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lra I 5mm. I
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~I.=============~~~~~~~~~I r2
12.5 mm.

Fig. 5. Finite element mesh and dimensions of a uniaxially stressed specimen.

that cubic elements are well suited to represent the high stress gradients near the free edge.
Along the 'z-axis of the laminate the nodal translations in the 'rdirection were prevented,
while translations in ',- and 'z-direction are suppressed along the 'raxis.

The continuum elements were integrated using 4 x 4 GauBian scheme. For the interface
elements a 4-point Newton-Cotes integration rule was applied, since a GauB scheme results
in spurious oscillations in the stress profiles at locations where high stress gradients exist
(Schellekens and de Borst, 1993). The initial stiffness of the interface elements was chosen
equal to D = 10+ 8 N mm- 3

• For the transverse tensile strength of graphite/epoxy a value
of it = 51.6 N mm- z (Tsai, 1988) was substituted. In all the non-linear analyses the post­
failure behaviour of the interface elements was determined by a linear softening relation.
To achieve a rate-controlled delamination a fracture toughness equal to GIc = 0.175 N
mm- I has been used, which value was provided by Wang (1989).

A first series of simulations was performed to investigate the mesh sensitivity of the
results. Three different finite element meshes were used with a varying number of elements
over the width of the specimen. In all cases the element height was chosen equal to the ply
thickness. The part of the specimen within 5 mm of the free edge was modelled using 50,
100 and 200 elements respectively for each ply (element lengths: 0.1, 0.05 and 0.025 mm).
The remaining 7.5 mm was modelled using three elements per ply. The non-linear analyses
start with a stepwise decrease of the temperature to - 125°C followed by the application
of the uniaxial strain load. Figure 6 shows the results for the three different meshes. The
obtained value for the ultimate uniaxial strain Bu = 0.516% is in good agreement with the
result Bu = 0.53% that can be derived from data of Wang et ai. (1985) and Wang (1989).
Even more importantly, it is observed that, upon mesh refinement, the different analyses
converge to the same solution. The snap-back behaviour in the left diagram of Fig. 6 was
computed using indirect displacement control with the crack opening displacement (COD)
as a constraint for the determination of the load parameter ~A.. Only with this technique
the sharp snap back in the laminate response could be simulated in a stable manner. Figure

011 [N/mm 2]
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% £11

0.6,.-----------,

0.4

300.0
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0.5 1\'----------
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0.3
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delamination [mm]
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0.0 0.0 +---r--~-,....----,.-----l
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0
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Fig. 6. Mesh-sensitivity study for free edge delamination in a uniaxially loaded specimen. (a) Axial
load versus applied uniaxial strain. (b) Applied uniaxial strain versus delamination length.
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all [N/mm 2]
340.0.,-----.,..-------,

320.0

300.0

280.0 +-~-.-----r-....._____,r__--l
0.43 0.46 0.49 O. 2

% Ell

Fig. 7. Enlarged graph of snap-back behaviour of a uniaxially stressed specimen.

Fig. 8. Deformed laminate at a delamination length of 4.37 mm.

7 shows the snap back behaviour in more detail. A deformed geometry of the mesh with
100 elements per ply for a delamination of 4.37 mm is presented in Fig. 8. The scale of
deformation is 1.0. Also the effect ofmesh refinement in the vertical direction on the ultimate
uniaxial load was examined. To this end the [± 25/90]8 laminate was modelled taking 1, 2
or 3 elements over one ply thickness. The element length in these analyses was equal to 0.1
mm. In Fig. 9 the results of these simulations are depicted. Similar to the results of the
previous analyses hardly any effect of mesh refinement on the results is encountered.

To investigate the effect of the value of the tensile strength on the ultimate tensile strain
two additional analyses with the [± 25/90]8 were carried out in which f, was varied between
90% and 110% of the original value (46.44 N mm- 2and 56.76 N mm - 2). The results of
Fig. 10 show a maximum shift of only 1.2% in the values for the ultimate uniaxial strain.
The fact that the variation is small is a convenient outcome, since there can be a considerable
experimental scatter in the determination of the transverse tensile strength.

1,2 and3
elements per ply

~
0.4

all [N/mm 2]

350.0.,-------..,..-.,..---,

300.0

250.0

200.0

150.0

100.0

50.0

0.0 +----,---r--.----,---,----t
0.0 0.1 0.2 0.3 0.4 0.5 0.6

% Ell

(a)

% Ell

0.6 -,---..,..--..,..------,

0.5 i\.
--~------

12and3
______ elements per ply

0.3

0.2

0.1

0.0 +---.----.----r---r---1
0.0 1.0 2.0 3.0 4.0 5.0

delamination [mm]
(b)

Fig. 9. Effect of mesh refinement in the thickness direction of the laminate. (a) Axial load versus
applied uniaxial strain. (b) Applied uniaxial strain versus delamination length.
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Table 2. Effect of the fracture toughness G, on the ultimate strain

Percentage Failure strain Percentage

0.13125 Nmm- '
0.175Nmm- 1

0.21875Nmm- 1

75%
100%
125%

0.432%
0.516%
0.589%

84%
100%
114%

100.0

50.0

1.0 2.0 3.0 4.0 5.0
delamination [mm]

(b)

ft =, 51.6 Nlmm2 ±10%

-----

% £11

0.6 -,--..,..----...,--...,...-....,

0.5

0.3

0.2

0.1

0.0;--;---.....--r---,.--;
0.0

0.4

....//..•...........•...........•... : I/ : , , .

0.0 -i'---r--;---,r--r--r--;
0.0 0.1 0.2 0.3 0.4 0.5 0.6

%£11
(a)

300.0

250.0

200.0

150.0 ."

Fig. 10. Effect ofa 10% variation of the tensile strength on the delamination process ofa uniaxially
loaded specimen. (a) Axial load versus applied uniaxial strain. (b) Applied uniaxial strain versus

delamination length.

Table 2 shows the impact on the ultimate strain of the same 6-ply laminate when the
value of the fracture toughness is varied between 75% and 125% of its original value. The
results indicate that the ultimate strain depends linearly on the square root of the fracture
toughness of the material. Thus, it is essential to have an accurate prediction of the fracture
toughness in order to predict a correct value of the ultimate strain.

Analyses on [±25n/90n]. and [±45n/On/90n]. (n = 1,2,3) laminates were performed to
assess the capability of our approach to deal with the effect of the laminate thickness (size
effect). In the analyses again a fracture toughness G1c equal to 0.175 N mm- I and an element
length of 0.05 mm were used. Figure II illustrates the effect of the laminate thickness on

[±2Sn190nls

%eu

'1
\ ,

....

0.6

0.5

0.4

0.3

0.2-

0.1.
n=1 n=2 n=3

O.O...l.---i),.r--t--+---J
I) 16 24

number of p1ys

0.5

0.1

0.4

0.2

n=1 n=2 n=3
O.O----+--I--+-----J

6 12 18
number of plys

A eu(n) calculated.
eu(n) experiment.
Eu (n) = eu (1 )l.frl

0.3

Fig. II. Ultimate strains in uniaxially loaded specimens. Comparison between numerical and
experimental results.
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Table 3. Experimental values for the ultimate strain for different laminates

Stacking sequence

[0 2/90 2 / ±45 2j,
[90 2/0 2 / ±45 2j,

[±45/90/0j,
[±45/0/90j,
[±25/90j,

Loading type

compression
compression

tension
tension
tension

Experimental failure straint

-0.62%
-0.54%

0.88%
0.67%
0.53%

tData derived from Wang (1989).

the laminate response for both stacking sequences. We observe an inverse dependence of
the ultimate strain on the square root of the laminate thickness, as indicated by the
dashed line. Crossman and Wang (1985) and O'Brien (1982, 1985) have reported the same
dependence.

For a number of laminates the straightforward procedure as was used for the analyses
of the [± 25n/90nl s and the [±45n /On /90nl s laminates did not lead to an accurate prediction
of the ultimate strain. As a result of high compressive thermal stresses at the midplane
interface the calculated values of the failure strain exceeded the experimental values with
percentages up to 22.5%. To come to a better understanding of this discrepancy these
laminates were modelled with an initial edge crack. The introduction of an initial defect
can be justified by the fact that in reality laminated composites contain initial imperfections
which may either be introduced during the manufacturing process or may be material
imperfections. In the following the influence of the size of these initial imperfections on the
ultimate strain of the composite is investigated. For the laminates listed in Table 3 the
length of the pre-crack was varied between 0.0 mm and 0.20 mm with an increment of 0.05
mm. From the results we observe that the impact of the initial crack length on the failure
strain can be significant depending on the stacking sequence of the laminate. In fact,
comparison of the results from Fig. 12 with the experimental values that are collected in
Table 3 supports the claim [cf Wang (1990)l that there is a critical length of the initial flaw
in a laminate which is in the order of the ply thickness.

6. CONCLUDING REMARKS

A fully non-linear finite element approach which accounts for thermal and hygroscopic
effects has been proposed for the analysis of free edge delamination problems in composite
laminates. No spurious influence ofmesh refinement on delamination growth is encountered.
This is a result of the inclusion of the fracture energy in the constitutive relations for the
interface elements which yields a softening type of response after the onset of delamination.

% IEul
1.25,...------------,

--A- [02/902/±4521s
1.00

-G------ [902/02/±4521s

0.75
-----*-- [±45/90/01s

0.50 -- --- --6--- ----6- -- ----6--- - - -- -+--- [±45/0/901s

0.25 ----6---- [±25/901s

0.0 -t----,.--,--......---l
0.0 O. 5 0.10 0.15 O. 0

flaw length [mml
Fig. 12. Influence of the initial edge flaw length on the ultimate strain (numerical results).
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The obtained value for the ultimate strain for the [±25/90]s laminates corresponds with
the value obtained by Wang et al. (1985) and Wang (1989). It has been demonstrated that
the ultimate uniaxial strain is rather insensitive to variations of the tensile strength ft. This
is advantageous since there can be a substantial experimental scatter in the determination
of the transverse strength. Furthermore the method results in a proper treatment of size
effects.

Acknowledgements-The calculations reported in this paper have been carried out using a pilot version of the
DIANA finite element programme of TNO Building and Construction Research.
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